Tru Level Tuff Top

RLA Polymers Pty Ltd
Chemwatch: 5268-88
Version No: 2.1.1.1

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Tru Level Tuff Top
Synonyms	Not Available
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against
Relevant identified uses Self smoothing, cementitious underlayment for vinyl floors.

Details of the supplier of the safety data sheet	
Registered company name	RLA Polymers Pty Ltd
Address	215 Colchester Road Kilsyth VIC 3137 Australia
Telephone	+61397281644
Fax	+61397286009
Website	www.rlagroup.com.au
Email	sales@rlagroup.com.au

Emergency telephone number

Association / Organisation
Emergency telephone numbers
Other emergency telephone
numbers

Not Available
+61 397281644 (RLA Group Technical Manager) business hours
132766 (Security Monitoring Service)

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

| HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	Not Applicable
Classification ${ }^{[1]}$	Skin Corrosion/lrritation Category 2, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Specific target organ toxicity - repeated exposure Category 2
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008-Annex VI
Label elements	
Hazard pictogram(s)	
SIGNAL WORD	DANGER
Hazard statement(s)	
H315	Causes skin irritation.
H318	Causes serious eye damage.
H317	May cause an allergic skin reaction.
H335	May cause respiratory irritation.
H373	May cause damage to organs through prolonged or repeated exposure.

Precautionary statement(s) Prevention

	P271	Use only outdoors or in a well-ventilated area.
	P280	Wear protective gloves/protective clothing/eye protection/face protection.
$\mathbf{P 2 7 2}$	Contaminated work clothing should not be allowed out of the workplace.	

Precautionary statement(s) Response

$\mathbf{P 3 0 5 + P 3 5 1 + P 3 3 8}$	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
$\mathbf{P 3 1 0}$	Immediately call a POISON CENTER or doctor/physician.
$\mathbf{P 3 6 2}$	Take off contaminated clothing and wash before reuse.
$\mathbf{P 3 0 2 + P 3 5 2}$	IF ON SKIN: Wash with plenty of soap and water.

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures		
CAS No	\%[weight]	Name
$14808-60-7$	$30-60$	silica crystalline - quartz
$1317-65-3$	$10-30$	calcium carbonate
$65997-15-1$	$2-10$	portland cement

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: - Immediately hold eyelids apart and flush the eye continuously with running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. - Transport to hospital or doctor without delay. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: - Immediately remove all contaminated clothing, including footwear. - Flush skin and hair with running water (and soap if available). - Seek medical attention in event of irritation.
Inhalation	- If fumes or combustion products are inhaled remove from contaminated area. - Lay patient down. Keep warm and rested. - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. - Transport to hospital, or doctor, without delay.
Ingestion	- If swallowed do NOT induce vomiting. - If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. - Observe the patient carefully. - Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. - Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. - Seek medical advice.

Indication of any immediate medical attention and special treatment needed
Treat symptomatically.
For acute or short term repeated exposures to iron and its derivatives:

- Always treat symptoms rather than history.
- In general, however, toxic doses exceed $20 \mathrm{mg} / \mathrm{kg}$ of ingested material (as elemental iron) with lethal doses exceeding $180 \mathrm{mg} / \mathrm{kg}$.
- Control of iron stores depend on variation in absorption rather than excretion. Absorption occurs through aspiration, ingestion and burned skin.
- Hepatic damage may progress to failure with hypoprothrombinaemia and hypoglycaemia. Hepatorenal syndrome may occur.
- Iron intoxication may also result in decreased cardiac output and increased cardiac pooling which subsequently produces hypotension.
- Serum iron should be analysed in symptomatic patients. Serum iron levels ($2-4$ hrs post-ingestion) greater that $100 \mathrm{ug} / \mathrm{dL}$ indicate poisoning with levels, in excess of $350 \mathrm{ug} / \mathrm{dL}$, being potentially serious. Emesis or lavage (for obtunded patients with no gag reflex) are the usual means of decontamination.
Activated charcoal does not effectively bind iron.
- Catharsis (using sodium sulfate or magnesium sulfate) may only be used if the patient already has diarrhoea.
- Deferoxamine is a specific chelator of ferric (3+) iron and is currently the antidote of choice. It should be administered parenterally. [Ellenhorn and Barceloux: Medical Toxicology]

Extinguishing media

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

| Fire Incompatibility | None known. |
| :--- | :--- | :--- |

Advice for firefighters

Fire Fighting	- When silica dust is dispersed in air, firefighters should wear inhalation protection as hazardous substances from the fire may be adsorbed on the silica particles. - When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse. - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves in the event of a fire. - Prevent, by any means available, spillage from entering drains or water courses. - Use fire fighting procedures suitable for surrounding area.
Fire/Explosion Hazard	- Non combustible. - Not considered a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of: silicon dioxide (SiO2) When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles. May emit poisonous fumes. May emit corrosive fumes.
HAZCHEM	Not Applicable

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
See section 8
Environmental precautions
See section 12
Methods and material for containment and cleaning up

Minor Spills	- Remove all ignition sources. - Clean up all spills immediately. - Avoid contact with skin and eyes. - Control personal contact with the substance, by using protective equipment.
Major Spills	Moderate hazard. - CAUTION: Advise personnel in area. - Alert Emergency Services and tell them location and nature of hazard. - Control personal contact by wearing protective clothing.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling	
Safe handling	- Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps.
Other information	- Store in original containers. - Keep containers securely sealed. - Store in a cool, dry area protected from environmental extremes. - Store away from incompatible materials and foodstuff containers.
Conditions for safe storage, including any incompatibilities	
Suitable container	- Polyethylene or polypropylene container. - Check all containers are clearly labelled and free from leaks.
Storage incompatibility	- WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively. The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive. - Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

| OCCUPATIONAL EXPOSURE LIMITS (OEL)
|| INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes

Australia Exposure Standards	silica crystalline - quartz	Quartz (respirable dust)	0.1 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	silica crystalline - quartz	Quartz (respirable dust)	0.1 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	silica crystalline - quartz	Silica - Crystalline	Not Available	Not Available	Not Available	Not Available
Australia Exposure Standards	calcium carbonate	Calcium carbonate	$10 \mathrm{mg} / \mathrm{m} 3$	Not Available	Not Available	Not Available
Australia Exposure Standards	portland cement	Portland cement	$10 \mathrm{mg} / \mathrm{m} 3$	Not Available	Not Available	Not Available
EMERGENCY LIMITS						
Ingredient	Material name		TEEL-1		TEEL-2	TEEL-3
silica crystalline - quartz	Silica, crystalline-quartz; (Silicon dioxide)		$0.075 \mathrm{mg} / \mathrm{m} 3{ }^{\text {a }}$		$33 \mathrm{mg} / \mathrm{m} 3$	$200 \mathrm{mg} / \mathrm{m} 3$
calcium carbonate	Limestone; (Calcium carbonate; Dolomite)		$45 \mathrm{mg} / \mathrm{m} 3$		$500 \mathrm{mg} / \mathrm{m} 3$	$3,000 \mathrm{mg} / \mathrm{m} 3$
calcium carbonate	Carbonic acid, calcium salt		$45 \mathrm{mg} / \mathrm{m} 3$		$210 \mathrm{mg} / \mathrm{m} 3$	1,300 mg/m3
Ingredient	Original IDLH		Revised IDLH			
silica crystalline - quartz	Not Available		Not Available			
calcium carbonate	Not Available		Not Available			
portland cement	$5,000 \mathrm{mg} / \mathrm{m} 3$		Not Available			

Exposure controls

| Appropriate engineering |
| ---: | :--- |
| controls | | Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be |
| :--- |
| highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. |
| The basic types of engineering controls are: |
| Process controls which involve changing the way a job activity or process is done to reduce the risk. |
| Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and |
| "removes" air in the work environment. |

Respiratory protection

Type AX-P Filter of sufficient capacity. (AS/NZS 1716 \& 1715, EN 143:2000 \& 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to $10 \times$ ES	AXP1 Air-line*	-	AX PAPR-P1
up to $50 \times \mathrm{ES}$	Air-line**	AX P2	AX PAPR-P2
up to $100 \times$ ES	-	AX P3	-
		Air-line*	-
$100+x$ ES	-	Air-line**	AX PAPR-P3

* - Negative pressure demand ${ }^{* *}$ - Continuous flow

A (All classes) = Organic vapours, B AUS or $\mathrm{B} 1=$ Acid gasses, $\mathrm{B} 2=$ Acid gas or hydrogen cyanide $(\mathrm{HCN}), \mathrm{B} 3=$ Acid gas or hydrogen cyanide(HCN), $\mathrm{E}=\mathrm{Sulfur}$ dioxide(SO2), $\mathrm{G}=\mathrm{Agricultural}$ chemicals, $\mathrm{K}=\mathrm{Ammonia}(\mathrm{NH} 3), \mathrm{Hg}=$ Mercury, $\mathrm{NO}=$ Oxides of nitrogen, $\mathrm{MB}=$ Methyl bromide, $\mathrm{AX}=\mathrm{Low}$ boiling point organic compounds(below 65 degC)

Information on basic physical and chemical properties

Appearance	Fine grey powder; partly soluble in water.		
Physical state	Divided Solid	Relative density (Water = 1)	>1.5
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (${ }^{\circ} \mathrm{C}$)	Not Applicable
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point $\left({ }^{\circ} \mathrm{C}\right)$	Not Available	Viscosity (cSt)	Not Applicable
Initial boiling point and boiling range (${ }^{\circ} \mathrm{C}$)	Not Applicable	Molecular weight ($\mathrm{g} / \mathrm{mol}$)	Not Applicable
Flash point (${ }^{(} \mathrm{C}$)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (\%)	Not Applicable	Surface Tension (dyn/cm or mN / m)	Not Applicable
Lower Explosive Limit (\%)	Not Available	Volatile Component (\%vol)	Not Available
Vapour pressure (kPa)	Negligible	Gas group	Not Available
Solubility in water (g/L)	Partly miscible	pH as a solution (1\%)	Not Applicable
Vapour density ($\mathbf{A i r}=1$)	Not Available	voc g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	, Unstable in the presence of incompatible materials. , Product is considered stable. r Hazardous polymerisation will not occur.
Possibility of hazardous	See section 7
reactions	Conditions to avoid
Incompatible materials	See section 7
Hazardous decomposition 7	
products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled	The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual. Inhalation may result in ulcers or sores of the lining of the nose (nasal mucosa), and lung damage. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Effects on lungs are significantly enhanced in the presence of respirable particles. Acute silicosis occurs under conditions of extremely high silica dust exposure particularly when the particle size of the dust is small. The disease is rapidly progressive and spreads widely through the lungs within months of the initial exposure and causing death within 1 to 2 years.
Ingestion	Not normally a hazard due to the physical form of product. The material is a physical irritant to the gastro-intestinal tract Ingestion may result in nausea, abdominal irritation, pain and vomiting
Skin Contact	The material may accentuate any pre-existing dermatitis condition Skin contact may result in severe irritation particularly to broken skin. Ulceration known as "chrome ulcers" may develop. Chrome ulcers and skin cancer are significantly related. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering.
Eye	If applied to the eyes, this material causes severe eye damage.
Chronic	Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Harmful: danger of serious damage to health by prolonged exposure through inhalation. This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Animal testing shows long term exposure to aluminium oxides may cause lung disease and cancer, depending on the size of the particle. The smaller the size, the greater the tendencies of causing harm. Red blood cells and rabbit alveolar macrophages exposed to calcium silicate insulation materials in vitro showed haemolysis in one study but not in another. Both studies showed the substance to be more cytotoxic than titanium dioxide but less toxic than asbestos. In a small cohort mortality study of workers in a wollastonite quarry, the observed number of deaths from all cancers combined and lung cancer were lower than expected. Wollastonite is a calcium inosilicate mineral (CaSiO3).

SILICA CRYSTALLINE QUARTZ
CALCIUM CARBONATE
PORTLAND CEMENT
Acute Toxicity
Skin Irritation/Corrosion
Serious Eye Damage/Irritation
Respiratory or Skin sensitisation
Mutagenicity

WARNING: For inhalation exposure ONLY: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS

The International Agency for Research on Cancer (IARC) has classified occupational exposures to respirable (<5 um) crystalline silica as being carcinogenic to humans. This classification is based on what IARC considered sufficient evidence from epidemiological studies of humans for the carcinogenicity of inhaled silica in the forms of quartz and cristobalite. Crystalline silica is also known to cause silicosis, a non-cancerous lung disease. Intermittent exposure produces; focal fibrosis, (pneumoconiosis), cough, dyspnoea, liver tumours.
The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.
The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.
Eye (rabbit) $0.75: \mathrm{mg} / 24 \mathrm{~h}$ - No evidence of carcinogenic properties. No evidence of mutagenic or teratogenic effects
The following information refers to contact allergens as a group and may not be specific to this product.
Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated mmune reactions.
Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia.
No significant acute toxicological data identified in literature search.
Carcinogenicity

SECTION 12 ECOLOGICAL INFORMATION

Toxicity					
Tru Level Tuff Top	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available				
silica crystalline - quartz	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available

calcium carbonate	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	>56000mg/L	4
	EC50	72	Algae or other aquatic plants	>14mg/L	2
	NOEC	72	Algae or other aquatic plants	14mg/L	2
portland cement	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available
Legend:	Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data				
DO NOT discharge into sewer or waterways.					
Persistence and degradability					
Ingredient	Persistence: Water/Soil		Persistence: Air		
	No Data available for all ingredients		No Data available for all ingredients		
Bioaccumulative potential					
Ingredient	Bioaccumulation				
	No Data available for all ingredients				
Mobility in soil					
Ingredient	Mobility				
	No Data available for all ingredients				

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal	- Containers may still present a chemical hazard/ danger when empty. - Return to supplier for reuse/ recycling if possible.
	Otherwise:
	- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
	- Where possible retain label warnings and SDS and observe all notices pertaining to the product.
	- DO NOT allow wash water from cleaning or process equipment to enter drains.
	- It may be necessary to collect all wash water for treatment before disposal.
	- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
	- Where in doubt contact the responsible authority.
	- Recycle wherever possible or consult manufacturer for recycling options.
	- Consult State Land Waste Management Authority for disposal.
	- Bury residue in an authorised landfill.
	- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS
Transport in bulk according to Annex II of MARPOL and the IBC code
Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

SILICA CRYSTALLINE - QUARTZ(14808-60-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards	Australia Inventory of Chemical Substances (AICS)
Australia Hazardous Substances Information System - Consolidated Lists	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC
	Monographs

CALCIUM CARBONATE(1317-65-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards		Australia Inventory of Chemical Substances (AICS)
PORTLAND CEMENT(65997-15-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS		
Australia Exposure Standards		Australia Inventory of Chemical Substances (AICS)
National Inventory	Status	
Australia - AICS	Y	
Canada - DSL	Y	
Canada - NDSL	N (portland cement; silica crystalline - quartz)	
China - IECSC	Y	
Europe - EINEC / ELINCS / NLP	Y	
Japan - ENCS	N (portland cement)	
Korea - KECI	Y	
New Zealand - NZloC	Y	
Philippines - PICCS	N (portland cement)	
USA - TSCA	Y	
Legend:	$Y=$ All ingredients are on the inventory $N=$ Not determined or one or more ingredients are not on the	e inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

Name	CAS No
silica crystalline - quartz	$14808-60-7,122304-48-7,122304-49-8,12425-26-2,1317-79-9,70594-95-5,87347-84-0,308075-07-2$

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average
PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit。
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL :No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index
This document is copyright.
Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 95724700.

